Bio

 Education

Ph.D., Chemistry, State University of New York at Buffalo; Buffalo, NY Dissertation: Spectroscopic Investigations of a Room Temperature Ionic Liquid: Implications as a New Age, Green Solvent ; Advisor, Dr. Frank V. Bright

B.S., Chemistry, Georgia Southern University; Statesboro, GA 

 

Professional Experience

Assistant Professor; University of Missouri

Independent Consultant; Harbach Engineering and Solutions, Inc.         

Postdoctoral Associate; Oak Ridge National Laboratory

Senior Scientist; Protein Discovery, Inc.

Health and Safety Manager; Protein Discovery, Inc.

Postdoctoral Associate; Los Alamos National Laboratory

Graduate Research Assistant; University at Buffalo

Teaching Assistant; University at Buffalo

Undergraduate Research Assistant; Georgia Southern University

Medical Assistant; Dr. Melania Domingo

Research

CURRENTLY ACCEPTING NEW GRADUATE STUDENTS

Research in the Baker lab is focused on designing nanomaterials and novel fluids for both sensor, separations, energy, and environmental sustainability applications.

Some of our current projects include:

  • Gas capture/separation (including carbon dioxide)

  • Environmental sensors/separations

  • Chemical and biochemical sensors

  • Nanomaterials for energy applications

  • Designer ionic liquid and deep eutectic solvent systems

  • Microwave synthesis of nanomaterials

Please see our group website for more information 

Sheila Baker Group Research Topics
Select Publications

1. Wang, J.;  Xue, J.;  Dong, X.;  Yu, Q.;  Baker, S. N.;  Wang, M.; Huang, H., Antimicrobial properties of benzalkonium chloride derived polymerizable deep eutectic solvent. Int. J. Pharm. 2020, 575https://doi.org/10.1016/j.ijpharm.2019.119005

2. Wang, J.; Baker, S. N., Pyrrolidinium salt based binary and ternary deep eutectic solvents: Green preparations and physiochemical property characterizations. Green Process. Synth. 2018, 7 (4), 353-359. https://doi.org/10.1515/gps-2017-0060

3. Ravula, S.;  Larm, N. E.;  Liu, Y.;  Atwood, J. L.;  Baker, S. N.; Baker, G. A., Ionothermal synthesis of magnetically-retrievable mesoporous carbons from alkyne-appended ionic liquids and demonstration of their use in selective dye removal. New J. Chem. 2018, 42 (3), 1979-1986. https://doi.org/10.1039/c7nj03849f

4. Wang, J.;  Dong, X.;  Yu, Q.;  Baker, S. N.;  Li, H.;  Larm, N. E.;  Baker, G. A.;  Chen, L.;  Tan, J.; Chen, M., Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite. Dent. Mater. 2017, 33 (12), 1445-1455. https://doi.org/10.1016/j.dental.2017.09.014

5. Smith, C. J.;  Wagle, D. V.;  O'Neill, H. M.;  Evans, B. R.;  Baker, S. N.; Baker, G. A., Multi-purpose cellulosic ionogels. In ACS Symposium Series, Scurto, A. M.; Shiflett, M. B., Eds. American Chemical Society: 2017; Vol. 1250, pp 143-155.

6. Smith, C. J.;  Wagle, D. V.;  O'Neill, H. M.;  Evans, B. R.;  Baker, S. N.; Baker, G. A., Bacterial Cellulose Ionogels as Chemosensory Supports. ACS Appl. Mater. Interfaces 2017, 9 (43), 38042-38051. https://doi.org/10.1021/acsami.7b12543

7. Ravula, S.;  Baker, S. N.;  Kamath, G.; Baker, G. A., Ionic liquid-assisted exfoliation and dispersion: Stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale 2015, 7 (10), 4338-4353. https://doi.org/10.1039/c4nr01524j

8. Zhu, J.; Baker, S. N., Lewis base polymers for modifying sorption and regeneration abilities of amine-based carbon dioxide capture materials. ACS Sustainable Chem. Eng. 2014, 2 (12), 2666-2674. https://doi.org/10.1021/sc5003648

9. Sze, L. L.;  Pandey, S.;  Ravula, S.;  Pandey, S.;  Zhao, H.;  Baker, G. A.; Baker, S. N., Ternary deep eutectic solvents tasked for carbon dioxide capture. ACS Sustainable Chem. Eng. 2014, 2 (9), 2117-2123. https://doi.org/10.1021/sc5001594

10. Hofmann, C. M.;  Essner, J. B.;  Baker, G. A.; Baker, S. N., Protein-templated gold nanoclusters sequestered within sol-gel thin films for the selective and ratiometric luminescence recognition of Hg2+. Nanoscale 2014, 6 (10), 5425-5431. https://doi.org/10.1039/c4nr00610k

11. Wang, J.;  Xiong, J.;  Baker, G. A.;  Jiji, R. D.; Baker, S. N., Developing microwave-assisted ionic liquid microextraction for the detection and tracking of hydrophobic pesticides in complex environmental matrices. RSC Adv. 2013, 3 (38), 17113-17119. https://doi.org/10.1039/c3ra41139g

12. Pandey, S.;  Baker, G. A.;  Sze, L.;  Pandey, S.;  Kamath, G.;  Zhao, H.; Baker, S. N., Ionic liquids containing fluorinated β-diketonate anions: Synthesis, characterization and potential applications. New J. Chem. 2013, 37 (4), 909-919. https://doi.org/10.1039/c3nj40855h

13. Baker, G. A.;  Rachford, A. A.;  Castellano, F. N.; Baker, S. N., Ranking solvent interactions and dielectric constants with [Pt(mesBIAN)(tda)]: A cautionary tale for polarity determinations in ionic liquids. ChemPhysChem 2013, 14 (5), 1025-1030. https://doi.org/10.1002/cphc.201200981

14. Trivedi, S.;  Pandey, S.;  Baker, S. N.;  Baker, G. A.; Pandey, S., Pronounced hydrogen bonding giving rise to apparent probe hyperpolarity in ionic liquid mixtures with 2,2,2-trifluoroethanol. J Phys Chem B 2012, 116 (4), 1360-1369. https://doi.org/10.1021/jp210199s

15. Rai, R.;  Pandey, S.;  Baker, S. N.;  Vora, S.;  Behera, K.;  Baker, G. A.; Pandey, S., Ethanol-assisted, few nanometer, water-in-ionic-liquid reverse micelle formation by a zwitterionic surfactant. Chem. Eur. J. 2012, 18 (39), 12213-12217. https://doi.org/10.1002/chem.201200682

16. Pandey, S.;  Baker, S. N.;  Pandey, S.; Baker, G. A., Optically responsive switchable ionic liquid for internally-referenced fluorescence monitoring and visual determination of carbon dioxide. Chem. Commun. 2012, 48 (56), 7043-7045. https://doi.org/10.1039/c2cc32164e

17. Pandey, S.;  Baker, S. N.;  Pandey, S.; Baker, G. A., Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: A review. J Fluoresc 2012, 22 (5), 1313-1343. https://doi.org/10.1007/s10895-012-1073-x

18. Pandey, S.;  Ali, M.;  Kamath, G.;  Pandey, S.;  Baker, S. N.; Baker, G. A., Binding of the ionic liquid cation 1-alkyl-3-methylimidazolium to p-tetranitrocalix[4]arene probed by fluorescent indicator displacement. Anal. Bioanal. Chem. 2012, 403 (8), 2361-2366. https://doi.org/10.1007/s00216-012-5980-0

19. Mahurin, S. M.;  Yeary, J. S.;  Baker, S. N.;  Jiang, D. E.;  Dai, S.; Baker, G. A., Ring-opened heterocycles: Promising ionic liquids for gas separation and capture. J. Membr. Sci. 2012, 401-402, 61-67. https://doi.org/10.1016/j.memsci.2012.01.042

20. Kamath, G.;  Bhatnagar, N.;  Baker, G. A.;  Baker, S. N.; Potoff, J. J., Computational prediction of ionic liquid 1-octanol/water partition coefficients. Phys. Chem. Chem. Phys. 2012, 14 (13), 4339-4342. https://doi.org/10.1039/c2cp40122c

21. Al-Azzawi, O. M.;  Hofmann, C. M.;  Baker, G. A.; Baker, S. N., Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents. J. Colloid Interface Sci. 2012, 385 (1), 154-159. https://doi.org/10.1016/j.jcis.2012.07.001

22. Wang, C. H.;  Baker, S. N.;  Lumsden, M. D.;  Nagler, S. E.;  Heller, W. T.;  Baker, G. A.;  Deen, P. D.;  Cranswick, L. M. D.;  Su, Y.; Christianson, A. D., Antiferromagnetic order in MnO spherical nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83 (21),  https://doi.org/10.1103/PhysRevB.83.214418

23. Sun, Q. C.;  Xu, X.;  Baker, S. N.;  Christianson, A. D.; Musfeldt, J. L., Experimental determination of ionicity in MnO nanoparticles. Chem. Mater. 2011, 23 (11), 2956-2960. https://doi.org/10.1021/cm200582t

24. Sun, Q. C.;  Baker, S. N.;  Christianson, A. D.; Musfeldt, J. L., Magnetoelastic coupling in bulk and nanoscale MnO. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84 (1),  https://doi.org/10.1103/PhysRevB.84.014301

25. Kumar, V.;  Baker, G. A.;  Pandey, S.;  Baker, S. N.; Pandey, S., Contrasting behavior of classical salts versus ionic liquids toward aqueous phase J-aggregate dissociation of a cyanine dye. Langmuir 2011, 27 (21), 12884-12890. https://doi.org/10.1021/la203317t

26. Baker, S. N.;  Zhao, H.;  Pandey, S.;  Heller, W. T.;  Bright, F. V.; Baker, G. A., Fluorescence energy transfer efficiency in labeled yeast cytochrome c: A rapid screen for ion biocompatibility in aqueous ionic liquids. Phys. Chem. Chem. Phys. 2011, 13 (9), 3642-3644. https://doi.org/10.1039/c0cp02345k

27. Baker, S. N.; Baker, G. A., Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49 (38), 6726-6744. https://doi.org/10.1002/anie.200906623

28. Ali, M.;  Kumar, V.;  Baker, S. N.;  Baker, G. A.; Pandey, S., J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl) porphyrin. Phys. Chem. Chem. Phys. 2010, 12 (8), 1886-1894. https://doi.org/10.1039/b920500d

29. Baker, S. N.;  McCarty, T. A.;  Bright, F. V.;  Heller, W. T.; Baker, G. A., Ionic liquid advances in optical, electrochemical, and biochemical sensor technology. In Ionic Liquids in Chemical Analysis, CRC Press: 2008; pp 99-138.

30. Page, P. M.;  McCarty, T. A.;  Baker, G. A.;  Baker, S. N.; Bright, F. V., Comparison of dansylated aminopropyl controlled pore glass solvated by molecular and ionic liquids. Langmuir 2007, 23 (2), 843-849. https://doi.org/10.1021/la0621867

31. Munson, C. A.;  Kelepouris, L.;  Baker, G. A.;  Baker, S. N.;  Blanchard, G. J.; Bright, F. V., On the behavior of indole-containing species sequestered within reverse micelles at sub-zero temperatures. Appl Spectrosc 2007, 61 (5), 537-547. https://doi.org/10.1366/000370207780807795

32. Burrell, A. K.;  Del Sesto, R. E.;  Baker, S. N.;  McClesky, T. M.; Baker, G. A., Erratum: The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids (Green Chemistry (2007) 9 (449-454) DOI: 10.1039/b615950h). Green Chem. 2007, 9 (7), 809-810. https://doi.org/10.1039/b709132j

33. Burrell, A. K.;  Del Sesto, R. E.;  Baker, S. N.;  McCleskey, T. M.; Baker, G. A., The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 2007, 9 (5), 449-45. https://doi.org/10.1039/b615950h

34. Wang, Q.;  Baker, G. A.;  Baker, S. N.; Colón, L. A., Surface confined ionic liquid as a stationary phase for HPLC. Analyst 2006, 131 (9), 1000-1005. https://doi.org/10.1039/b607337a

35. Schertzer, B. M.;  Baker, S. N.;  Diver, S. T.; Baker, G. A., A general, modular approach to a new family of amine-substituted arylboronic acid saccharide chemosensors. Aust. J. Chem. 2006, 59 (9), 633-639. https://doi.org/10.1071/CH05292

36. Del Sesto, R. E.;  Baker, G. A.;  Baker, S. N.;  Scott, B. L.;  Keizer, T. S.;  Burrell, A. K.; McCleskey, T. M., Formation of an unusual charge-transfer network from an ionic liquid. Chem. Commun. 2006,  (3), 272-274. https://doi.org/10.1039/b513893k

37. Baker, S. N.;  Brauns, E. B.;  McCleskey, T. M.;  Burrell, A. K.; Baker, G. A., Fluorescence quenching immunoassay performed in an ionic liquid. Chem. Commun. 2006,  (27), 2851-2853. https://doi.org/10.1039/b606473f

38. Patra, A.;  Baker, G. A.; Baker, S. N., Effects of dopant concentration and annealing temperature on the phosphorescence from Zn2SiO4: Mn2+ nanocrystals. J Lumin 2005, 111 (1-2), 105-111. https://doi.org/10.1016/j.jlumin.2004.06.008

39. Gardinier, W. E.;  Baker, G. A.;  Baker, S. N.; Bright, F. V., Behavior of pyrene end-labeled poly(dimethylsiloxane) polymer tails in mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide and toluen. Macromolecules 2005, 38 (20), 8574-8582. https://doi.org/10.1021/ma051313n

40. Dattelbaum, A. M.;  Baker, S. N.; Baker, G. A., N-alkyl-N-methylpyrrolidinium salts as templates for hexagonally meso-ordered silicate thin films. Chem. Commun. 2005,  (7), 939-941. https://doi.org/10.1039/b415135f

41. Baker, S. N.;  McCleskey, T. M.; Baker, G. A., An ionic liquid-based optical thermometer. In ACS Symposium Series, American Chemical Society: 2005; Vol. 902, pp 171-181.

42. Baker, G. A.;  Baker, S. N.;  Pandey, S.; Bright, F. V., An analytical view of ionic liquids. Analyst 2005, 130 (6), 800-808. https://doi.org/10.1039/b500865b

43. Baker, G. A.; Baker, S. N., A simple colorimetric assay of ionic liquid hydrolytic stability. Aust. J. Chem. 2005, 58 (3), 174-177. https://doi.org/10.1071/CH05028

44. Patra, A.;  Baker, G. A.; Baker, S. N., Synthesis and luminescence study of Eu3+ in Zn 2SiO4 nanocrystals. Opt Mater 2004, 27 (1), 15-20. https://doi.org/10.1016/j.optmat.2004.01.003

45. Pandey, S.;  Fletcher, K. A.;  Baker, S. N.;  Baker, G. A.;  DeLuca, J.;  Fennie, M. F.; O'Sullivan, M. C., Solution aggregationn of anti-trypanosomal N-(2-napthylmethyl)ated polymines. J. Photochem. Photobiol. A Chem. 2004, 162 (2-3), 387-398. https://doi.org/10.1016/S1010-6030(03)00380-0

46. Pandey, S.;  Fletcher, K. A.;  Baker, S. N.; Baker, G. A., Correlation between the fluorescent response of microfluidity probes and the water content and viscosity of ionic liquid and water mixtures. Analyst 2004, 129 (7), 569-573. https://doi.org/10.1039/b402145m

47. Munson, C. A.;  Baker, G. A.;  Baker, S. N.; Bright, F. V., Effects of subzero temperatures on fluorescent probes sequestered within aerosol-OT reverse micelles. Langmuir 2004, 20 (5), 1551-1557. https://doi.org/10.1021/la0302753

48. Baker, S. N.;  McCleskey, T. M.;  Pandey, S.; Baker, G. A., Fluorescence studies of protein thermostability in ionic liquids. Chem. Commun. 2004, 4 (8), 940-941. https://doi.org/10.1039/b401304m

49. Baker, G. A.;  Pandey, S.;  Pandey, S.; Baker, S. N., A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids. Analyst 2004, 129 (10), 890-892. https://doi.org/10.1039/b410301g

50. Werner, J. H.;  Baker, S. N.; Baker, G. A., Fluorescence correlation spectroscopic studies of diffusion within the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Analyst 2003, 128 (6), 786-789. https://doi.org/10.1039/b300734k

51. Fletcher, K. A.;  Baker, S. N.;  Baker, G. A.; Pandey, S., Probing solute and solvent interactions within binary ionic liquid mixtures. New J. Chem. 2003, 27 (12), 1706-1712. https://doi.org/10.1039/b305965k

52. Da Re, R. E.;  Baker, S. N.;  Baker, G. A.;  Morris, D. E.; Costa, D. A. In Spectroscopy of transition metals and f-elements in ionic liquids, Global 2003: Atoms for Prosperity: Updating Eisenhower's Global Vision for Nuclear Energy, New Orleans, LA, New Orleans, LA, 2003; pp 1609-1612.

53. Ciubotaru, M.;  Ptaszek, L. M.;  Baker, G. A.;  Baker, S. N.;  Bright, F. V.; Schatz, D. G., RAG1-DNA binding in V(D)J recombination: Specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy. J. Biol. Chem. 2003, 278 (8), 5584-5596. https://doi.org/10.1074/jbc.M209758200

54. Baker, S. N.;  Baker, G. A.;  Munson, C. A.;  Chen, F.;  Bukowski, E. J.;  Cartwright, A. N.; Bright, F. V., Effects of Solubilized Water on the Relaxation Dynamics Surrounding 6-Propionyl-2-(N,N-dimethylamino)naphthalene Dissolved in 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298 K. Ind. Eng. Chem. Res. 2003, 42 (25), 6457-6463. https://doi.org/10.1021/ie0303606

55. Baker, G. A.;  Baker, S. N.; McCleskey, T. M., Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid. Chem. Commun. 2003, 3 (23), 2932-2933. https://doi.org/10.1039/b310459c

56. Baker, G. A.;  Baker, S. N.;  Mark McCleskey, T.; Werner, J. H., Aspects of chemical recognition and biosolvation within room temperature ionic liquids. In ACS Symposium Series, Rogers, R. D.; Seddon, K. R., Eds. 2003; Vol. 856, pp 212-224.

57. Hilmey, D. G.;  Abe, M.;  Nelen, M. I.;  Stilts, C. E.;  Baker, G. A.;  Baker, S. N.;  Bright, F. V.;  Davies, S. R.;  Gollnick, S. O.;  Oseroff, A. R.;  Gibson, S. L.;  Hilf, R.; Detty, M. R., Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity. J. Med. Chem. 2002, 45 (2), 449-461. https://doi.org/10.1021/jm0103662

58. Cardona, C. M.;  Wilkes, T.;  Ong, W.;  Kaifer, A. E.;  McCarley, T. D.;  Pandey, S.;  Baker, G. A.;  Kane, M. N.;  Baker, S. N.; Bright, F. V., Dendrimers functionalized with a single pyrene label: Synthesis, photophysics, and fluorescence quenching. J Phys Chem B 2002, 106 (34), 8649-8656. https://doi.org/10.1021/jp020862h

59. Baker, S. N.;  Baker, G. A.; Bright, F. V., Temperature-dependent microscopic solvent properties of 'dry' and 'wet' 1-butyl-3-methylimidazolium hexafluorophosphate: Correlation with ET(30) and Kamlet-Taft polarity scales. Green Chem. 2002, 4 (2), 165-169. https://doi.org/10.1039/b111285f

60. Baker, G. A.;  Munson, C. A.;  Bukowski, E. J.;  Baker, S. N.; Bright, F. V., Assessment of one- and two-photon excited luminescence for directly measuring O2, pH, Na+, Mg2+, or Ca2+ in optically dense and biologically relevant samples. Appl Spectrosc 2002, 56 (4), 455-463. https://doi.org/10.1366/0003702021955114

61. Baker, S. N.;  Baker, G. A.;  Munson, C. A.; Bright, F. V., New hot/cold stage for performing microfluorimetric measurements continuously between - 120 and +100 °C. Appl Spectrosc 2001, 55 (9), 1273-1277. https://doi.org/10.1366/0003702011953315

62. Baker, S. N.;  Baker, G. A.;  Kane, M. A.; Bright, F. V., The cybotactic region surrounding fluorescent probes dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate: Effects of temperature and added carbon dioxide. J Phys Chem B 2001, 105 (39), 9663-9668. https://doi.org/10.1021/jp0103528