Gary A. Baker
Associate Professor
102 Schlundt
573-882-1811
Bio

Education: 

BS, The State University of New York at Oswego, 1995
PhD, University at Buffalo, The State University of New York, 2001

Professional Experience: 

Associate Professor, University of Missouri-Columbia, 2017-present
Assistant Professor, University of Missouri-Columbia, 2011-2017
Research Scientist, Oak Ridge National Laboratory, 2005-2010
Postdoctoral Fellow, Los Alamos National Laboratory, 2001-2005

Selected Professional Activities: 

Associate Editor, Green Chemistry Letters and Reviews (IF 6.02), 2021-present
Editorial Board Member, Journal of Hazardous Materials (IF 14.22), 2020-present
Campus Writing Board, Fall 2020-  

Honors and Awards:

H-index: 74
Gold Chalk Award, Graduate Professional Council, 2020
Fuldner Faculty Fellow, MU Department of Chemistry, 2019 & 2020
Cottrell Scholar Award, 2015
Provost's Outstanding Junior Faculty Research and Creative Activity Award, 2015
George W. Thorn Award, University at Buffalo Distinguished Alumni Award, 2010
Presidential Early Career Award for Scientists and Engineers (PECASE), U.S. Department of Energy, 2008
Office of Science Outstanding Mentor Award, U.S. Department of Energy, 2007
Eugene P. Wigner Fellowship, Oak Ridge National Laboratory, 2005-2007
Frederick Reines Postdoctoral Fellowship, Los Alamos National Laboratory, 2002-2005
American Chemical Society Division of Analytical Chemistry Graduate Fellowship, 2000
Society for Applied Spectroscopy Graduate Student Award, 1999 

Baker group photo

 

top row: Asher Siegel, Dustin Boogaart

front: Piyuni Ishtaweera, Mia Brader, Devanshi Patel, Arren Mallott, Ashen Samaranayake, Gary Baker, Kanishka Sikligar, Jennifer Kist, Megan Taylor, Laxmi Adhikari, Angira Roy

(not available for photo: Isabelle Davis, Saamia Salik)

Research

Deep eutectic solvents; Ionic liquids; Light-driven nanochemistry; Nanocatalysis; Nanoparticle-based theranostics and bioimaging; Water remediation; Waste valorization; Problem solving 

batch versus continuous flow synthesis

Our work is motivated and inspired by the United Nations' Sustainable Development Goals (17):

  • No poverty
  • Zero hunger
  • Good health and well-being
  • Quality education
  • Gender equality
  • Clean water and sanitation
  • Affordable and clean energy
  • Decent work and economic growth
  • Industry, innovation, and infrastructure
  • Reduced inequalities
  • Sustainable cities and communities
  • Responsible consumption and production
  • Climate action
  • Life below water
  • Life on land
  • Peace, justice, and strong institutions
  • Partnerships for the goals

Research in the Baker Group is highly cross-disciplinary and collaborative in nature and is characterized by problem-solving using sustainable nanoscience and task-specific solvent-engineering approaches. Examples of ongoing research projects include:

  • Benign-by-design solvents (ionic liquids, deep eutectic solvents, zwitterionic liquids)
  • Deep eutectic solvent media for nanochemistry
  • Functional synthetic nanoclays 
  • Fluorescent, theranostic, catalytic, and photoacoustic nanomaterials
  • Advanced materials for water purification and desalination
  • Bioimaging agents (e.g., myelin imaging, cancer detection)
  • Waste valorization (e.g., upcyling food and plastic waste to useful materials)
  • Promoting diversity in education 

Women in Training for Science (WITS)
In partnership with Dr. Kathryn Fishman-Weaver—formerly, an award-winning secondary gifted education teacher at Rock Bridge High School—we launched an outreach program in 2013 with the overarching goal of cultivating the talents of female students from the high school to graduate school level, with seminars, hands-on learning activities, laboratory experiences, supervised training, sibling proxy (“big sister”) mentorship, and internships designed to ignite and promote a lifelong interest in science and scientific careers. For general inquiries, or for those interesting in participating, please feel free to contact me at: bakergar@missouri.edu.

Select Publications

(selected from a list of 300 articles; for a complete publication listing, please refer to my Google Scholar page)

Daykin, A. A.; Ravula, S.; Kaiser, H.; Heitmann, T.; Sanjeewa, L. D.; Baker, G. A.; He, X.; Mazza, A. R.; Miceli, P. F. Disorder and Hydrogenation in Graphene Nanopowder Revealed by Complementary X-ray and Neutron Scattering. 2022, submitted.

Hossain, M. I.; Adhikari, L.; Baker, G. A.; Blanchard, G. J. Relating the Induced Free Charge Density Gradient in a Room Temperature Ionic Liquid to Molecular-Scale Organization. 2022, submitted.

Anderson, G. I.; Hardy, D.; Hillesheim, P. C.; Wagle, D. V.; Zeller, M.; Baker, G. A.; Mirjafari, A. Anticancer Agents as Design Archetypes: Insights into the Structure–Property Relationships of Ionic Liquids with a Trityl Moiety. ACS Phys. Chem Au 2022, in press.

Zhao, H.; Baker, G. A. Functionalized Ionic Liquids for CO2 Capture under Ambient Pressure. Green Chem. Lett. Rev. 2022, in press.  

Siegel, A. L.; Polo-Parada, L.; Baker, G. A. Plasmon-Controlled Shaping of Gold Nanostar Photothermal Therapy Agents. Chem. Commun. 2022, in press. (link

Steinert, R. M.; Heikes, M. E.; Mitchell-Koch, J. T.; Baker, G. A.; Mitchell-Koch, K. R. Complexometric Titration of Bismuth in Over-the-Counter Stomach Relief Products. J. Chem. Educ. 2022, in press. (link)   

Wang, Y.; Adhikari, L.; Baker, G. A.; Blanchard, G. J. Cation Structure-Dependence of the Pockels Effect in Aprotic Ionic Liquids. Phys. Chem. Chem. Phys. 2022, 24, 1806718072. (link)

Wang, Y.; Adhikari, L.; Baker, G. A.; Blanchard, G. J. Characterizing the Structure-Dependence of the Induced Free Charge Density Gradient in Imidazolium and Pyrrolidinium Ionic Liquids. Phys. Chem. Chem. Phys. 2022, 24, 19314–19320 (link). 

Boogaart, D. J.; Essner, J. B.; Baker, G. A. Halide Effects on the Performance of Equimolar Choline Halide : Guanidinium Thiocyanate Deep Eutectic Solvents as Dye-Sensitized Solar Cell Electrolytes. Green Chem. Lett. Rev. 2022, 15, 615–626. (link)

Kist, J. A.; Essner, J. B.; Woodward, J. D.; Baker, G. A. Silver-Mediated Squaric Acid Reduction as a Facile, Ambient-temperature and Seedless Route to Tunable Bimetallic Au/Ag Nanostars and Nanosnowflakes. ChemNanoMat 2022, 8, e202200189. (link)

Essner, J. B.; Boogaart, D. J.; Baker, S. N.; Baker, G. A. Effects of Carbon Nanodot Fractionation on the Performance of Sensitized Mesoporous Titania Based Photovoltaic Devices. J. Mater. Chem. C 2022, 10, 8824–8833. (link

Heaney, M.; Adhikari, L.; Siegel, A. L.; Pekar, K.; Lefton, J.; Lamberti, C.; Rungthanapathsophon, P.; Walensky, J. R.; Baker, G. A.; Runčevski, T. Deep Eutectic Solvents Comprising Creatine and Citric Acid and Their Hydrated Mixtures. Chem. Commun. 2022, 58, 2838–2841. (link

Bhawawet, N.; Larm, N. E.; Adhikari, L.; Polo-Parada, L.; Gutiérrez-Juárez, G.; Baker, G. A. Laser-Induced Sound Pinging for the Rapid Determination of Total Sugar or Sweetener Content in Commercial Beverages. Talanta, 2022, 240, 123034. (link

sugar measurement using speed of sound

Zhao, H.; Martin, C. J.; Larm, N. E.; Baker, G. A.; Trujillo, T. C. Enzyme Activation by Water-Mimicking Dual-Functionalized Ionic Liquids. Mol. Catal. 2021515, 111882. (link

Boogaart, D. J.; Essner, J. B.; Baker, G. A. Evaluation of Canonical Choline Chloride Based Deep Eutectic Solvents as Dye-Sensitized Solar Cell Electrolytes. J. Chem. Phys. 2021155, 061102. (link)

Shao, L.; Hu, X.; Sikligar, K.; Baker, G. A.; Atwood, J. L. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal–Organic Nanocapsules. Acc. Chem. Res. 202154, 3191–3203. (link)

Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal–Organic Nanocapsules

LaRocca, M. M.; Baker, G. A.; Heitz, M. P. Assessing Rotation and Solvation Dynamics in Ethaline Deep Eutectic Solvent and its Solutions with Methanol. J. Chem. Phys. 2021155, 034505. (link)

Assessing Rotation and Solvation Dynamics in Ethaline Deep Eutectic Solvent and its Solutions with Methanol

Siegel, A. L.; Baker, G. A. Bespoke Nanostars: Synthetic Strategies, Tactics, and Uses for Tailored Branched Gold Nanoparticles. Nanoscale Advances 20213, 3980–4004. (link)

nano coffee pot

Larm, N. E.; Adhikari, L.; McKee, S.; Baker, G. A. Polyionic Nanoclays: Tailorable Hybrid Organic-Inorganic Catalytic Platforms. Chem. Mater. 202133, 3585–3592. (link)

polyionic nanoclay catalyst supports

Harris, M. A.; Kinsey, T.; Wagle, D. V.; Baker, G. A.; Sangoro, J. Evidence of a Liquid-Liquid Transition in a Glass-forming Ionic Liquid. Proc. Natl. Acad. Sci. 2021118, e2020878118. (link)

Evidence of a Liquid-Liquid Transition in a Glass-forming Ionic Liquid

 

Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021121, 1232–1285. (link

deep eutectic solvent applications

Kist, J. A.; Zhao, H.; Mitchell-Koch, K. R.; Baker, G. A. The Study and Application of Biomolecules in Deep Eutectic Solvents. J. Mater. Chem. B 20219, 536–566. (link)

deep eutectic solvents as bio-solvents

Adhikari, L.; Larm, N. E.; Baker, G. A. Batch and Flow Nanomanufacturing of Large Quantities of Colloidal Silver and Gold Nanocrystals Using Deep Eutectic Solvents. ACS Sustainable Chem. Eng. 20218, 14679–14689. (link)

batch vs. continuous flow synthesis of gold and silver nanoparticles in a deep eutectic solvent

Larm, N. E.; Essner, J. B.; Thon, J. A.; Bhawawet, N.; Adhikari, L.; St. Angelo, S. K.; Baker, G. A. Single Laboratory Experiment Integrating the Synthesis, Optical Characterization, and Nanocatalytic Assessment of Gold Nanoparticles. J. Chem. Educ. 2020, 97,1454–1459. (link)

Single Laboratory Experiment Integrating the Synthesis, Optical Characterization, and Nanocatalytic Assessment of Gold Nanoparticles

Smith, C. J.; Wagle, D. V.; Bhawawet, N.; Gehrke, S.; Hollóczki, O.; Pingali, S. V.; O’Neill, H.; Baker, G. A. Combined Small-Angle Neutron Scattering, Diffusion NMR, and Molecular Dynamics Study of a Eutectogel: Illuminating the Dynamical Behavior of Glyceline Confined in Bacterial Cellulose Gels. J. Phys. Chem. B 202035, 7647–7658. (link)

eutectogel

Wagle, D. V.; Kelley, S. P.; Sikligar, K.; Baker, G. A.; Atwood, J. L. An Indium‐Seamed Hexameric Metal–Organic Cage as an Example of a Hexameric Pyrogallol[4]arene Capsule Conjoined Exclusively by Trivalent Metal Ions. Angew. Chem. Int. Ed. 202059, 8062–8065. (link)

indium seamed nanocapsule

Trivedi, S.; Ravula, S.; Baker, G. A.; Pandey, S.; Bright, F. V. Controlling Microarray Feature Spreading and Response Stability on Porous Silicon Platforms by Using Alkene-Terminal Ionic Liquids and UV Hydrosilylation. Langmuir 202036, 5474–5482. (link)

photopatterning of ionic liquids to Si surfaces

Adhikari, L.; Larm, N. E.; Baker, G. A. Argentous Deep Eutectic Solvent Approach for Scaling Up the Production of Colloidal Silver Nanocrystals. ACS Sustainable Chem. Eng. 20197, 11036–11043. (link)

microwave synthesis of AgNPs in DES

Kist, J. A.; Henzl, M. T.; Bañuelos, J. L; Baker, G. A. Calorimetric Evaluation of the Operational Thermal Stability of Ribonuclease A in Hydrated Deep Eutectic Solvents. ACS Sustainable Chem. Eng. 20197, 12682–12687. (link)

DSC of RNase A in hydrated DESs

Larm, N. E.; Thon, J. A.; Vazmitsel, Y.; Atwood, J. L.; Baker, G. A. Borohydride stabilized gold–silver bimetallic nanocatalysts for highly efficient 4-nitrophenol reduction. Nanoscale Adv. 20191, 4665–4668. (link)

bimetallic AuAg nanocatalysts for nitroarene reduction

Saladin, M.; Rumble, C. A.; Wagle, D. V.; Baker, G. A.; Maroncelli, M. Characterization of a New Electron Donor–Acceptor Dyad in Conventional Solvents and Ionic Liquids. J. Phys. Chem. B 2019, 123, 44, 9395–9407. (link)

Characterization of a New Electron Donor–Acceptor Dyad in Conventional Solvents and Ionic Liquids

Larm, N. E.; Bhawawet, N.; Thon, J. A.; Baker, G. A. Best practices for reporting nanocatalytic performance: lessons learned from nitroarene reduction as a model reaction. New J. Chem. 201943, 17932–17936. (link

best practices for determining nitroarene reduction nanocatalytic activity

Larm, N. E.; Madugula, D.; Lee, M. W.; Baker, G. A. Polyhedral borane-capped coinage metal nanoparticles as high-performing catalysts for 4-nitrophenol reduction. Chem. Commun. 201955, 7990–7993. (link)

polyhedral borane capped AuNP catalysts

Thon, J. A.; Larm, N. E.; Vazmitsel, Y.; Baker, G. A. Plasmonic Evolution and Arrested Development for Silver Nanoscale Colloids: A Classroom Demonstration. J. Chem. Educ. 2019, 96, 11, 2560–2564. (link)

plasmonic evolution, educational classroom demo

Ravula, S.; Larm, N. E.; Mottaleb, M. A.; Heitz, M. P.; Baker, G. A. Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 20193, 42 (12pp). (link)

Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis

Adhikari, L.; Larm, N. E.; Wagle, D. V.; Atwood, J. L.; Baker, G. A. Facile, one-pot, in aqua synthesis of catalytically competent gold nanoparticles using pyrogallol[4]arene as the sole reagent. Chem. Commun. 2019, 55, 6261–6264. (link)

pyrogallolarene-capped nanoparticles

Essner, J. B.; Kist, J. A.; Polo-Parada, L.; Baker, G. A. Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chem. Mater. 201830, 1878–1887. (link)

myths, mistakes, and misconceptions in carbon dot research

Adhikari, L.; Larm, N. E.; Bhawawet, N.; Baker, G. A. Rapid Microwave-Assisted Synthesis of Silver Nanoparticles in a Halide-Free Deep Eutectic Solvent. ACS Sustainable Chem. Eng, 20186, 5725–5731. (link)

silver nanoparticle synthesis in DES using oleylamine

Bhawawet, N.; Essner, J. B.; Atwood, J. L.; Baker, G. A. On the non-innocence of the imidazolium cation in a rapid microwave synthesis of oleylamine-capped gold nanoparticles in an ionic liquid. Chem. Commun. 201854, 7523–7526. (link)

on the non-innocence of imidazolium ionic liquids in gold nanoparticle synthesis

Wagle, D. V.; Zhao, H.; Deakyne, C. A.; Baker, G. A. Quantum Chemical Evaluation of Deep Eutectic Solvents for the Extractive Desulfurization of Fuel. ACS Sustainable Chem. Eng. 20186, 7525–7531. (link)

Quantum Chemical Evaluation of Deep Eutectic Solvents for the Extractive Desulfurization of Fuel

Phelps, T. E.; Bhawawet, N.; Jurisson, S. S.; Baker, G. A. Efficient and Selective Extraction of 99mTcO4– from Aqueous Media using Hydrophobic Deep Eutectic Solvents. ACS Sustainable Chem. Eng. 20186, 13656–13661. (link)

pertechnetate extraction from water using hydrophobic deep eutectic solvents

Zhang, C.; Sikligar, K.; Patil, R. S.; Barnes, C. L.; Baker, G. A.; Atwood, J. L. A M18L6 metal–organic nanocapsule with open windows using mixed macrocycles. Chem. Commun. 201854, 635–637. (link)

Shen, X.; Laber, C. H.; Sarkar, U.; Galazzi, F.; Johnson, K. M.; Mahieu, N. G.; Hillebrand, R.; Fuchs-Knotts, T.; Barnes, C. L.; Baker, G. A.; Gates, K. S. Exploiting the Inherent Photophysical Properties of the Major Tirapazamine Metabolite in the Development of Profluorescent Substrates for Enzymes That Catalyze the Bioreductive Activation of Hypoxia-Selective Anticancer Prodrugs. J. Org. Chem. 2018, 83, 3126–3131. (link)

Hypoxia-Selective Anticancer Prodrugs

Larm, N. E.; Essner, J. B.; Pokpas, K.; Canon, J. A.; Jahed, N.; Iwuoha, E. I.; Baker, G. A. Room-Temperature Turkevich Method: Formation of Gold Nanoparticles at the Speed of Mixing Using Cyclic Oxocarbon Reducing Agents. J. Phys. Chem. C 2018, 122, 5105–5118. (link)

Room temperature Turkevich gold nanoparticle synthesis

Smith, C. J.; Wagle, D. V.; O'Neill, H. M.; Evans, B. R.; Baker, S. N.; Baker, G. A. Bacterial Cellulose Ionogels as Chemosensory Supports. ACS Appl. Mater. Interfaces 2017, 9, 43, 38042–38051. (link)

Bacterial Cellulose Ionogels as Chemosensory Supports

Wagle, D.V.; Rondinone, A. J.; Woodward, J. D.; Baker, G. A. Polyol Synthesis of Magnetite Nanocrystals in a Thermostable Ionic Liquid. Cryst. Growth Des. 2017, 17, 1558–1567. (link)

Polyol Synthesis of Magnetite Nanocrystals in a Thermostable Ionic Liquid

Ravula, S.; Zhang, C.; Essner, J. B.; Robertson, J. D.; Lin, J.; Baker, G. A. Ionic Liquid-Assisted Synthesis of Nanoscale (MoS2)x(SnO2)1–x on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 8065–8074. (link)

MoS2 SnO2 hydrogen evolution reaction nanocatalysts

Essner, J. B.; Baker, G. A. The emerging roles of carbon dots in solar photovoltaics: a critical review. Environ. Sci.: Nano 20174, 1216–1263. (link)

Rumble, C. A.; Kaintz, A.; Yadav, S. K.; Conway, B.; Araque, J. C.; Baker, G. A.; Margulis, C.; Maroncelli, M. Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium. Phys. Chem. B 2016, 120, 9450–9467. (link

Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium

 

Zhao, H.; Baker, G. A.; Wagle, D. V.; Ravula, S.; Zhang, Q. Tuning Task-Specific Ionic Liquids for the Extractive Desulfurization of Liquid Fuel. ACS Sustainable Chem. Eng. 2016, 4, 4771–4780. (link)

uning Task-Specific Ionic Liquids for the Extractive Desulfurization of Liquid Fuel

Wagle, D. V.; Deakyne, C. A.; Baker, G. A. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents. J. Phys. Chem. B 2016, 120, 6739–6746. (link)

Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents

Essner, J. B.; Laber, C. H.; Baker, G. A. Effective size and optical tailoring of catalytic bimetallic nanoparticles generated from citric acid-derived carbon nanodots. J. Mater. Chem A 20153, 16354–16360. (link)

Effective size and optical tailoring of catalytic bimetallic nanoparticles generated from citric acid-derived carbon nanodots

Wagle, D. V.; Baker, G. A.; Mamontov, E. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent. J. Phys. Chem. Lett. 20156, 2924–2928. (link)

Differential microscopic mobility of components within a deep eutectic solvent

Ravula, S.; Essner, J. B.; Baker, G. A. Kitchen-Inspired Nanochemistry: Dispersion, Exfoliation, and Hybridization of Functional MoS2 Nanosheets using Culinary Hydrocolloids. ChemNanoMat 20151, 167–177. (link)

kitchen inspired exfoliation of 2D nanosheets

Ravula, S.; Baker, S. N.; Kamath, G.; Baker, G. A. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale 20157, 4338–4353. (link)

Ravula, S.; Essner, J. B.; La, W. A.; Polo-Parada, L.; Kargupta, R.; Hull, G. J.; Sengupta, S.; Baker, G. A. Sunlight-assisted route to antimicrobial plasmonic aminoclay catalysts. Nanoscale 20157, 86–91. (link)

Sunlight-assisted route to antimicrobial plasmonic aminoclay catalysts

Wagle, D. V.; Baker, G. A. Cold welding: a phenomenon for spontaneous self healing and shape genesis at the nanoscale. Mater. Horiz. 20152, 157–167. (link)

cold welding

Wagle, D. V.; Zhao, H.; Baker, G. A. Deep Eutectic Solvents: Sustainable Media for Nanoscale and Functional Materials. Acc. Chem. Res. 201447, 2299–2308. (link)

deep eutectic solvents as sustainable media for nanomaterials synthesis

Pal, M.; Rai, R.; Yadav, A.; Khanna, R.; Baker, G. A.; Pandey, S. Self-Aggregation of Sodium Dodecyl Sulfate within (Choline Chloride + Urea) Deep Eutectic Solvent. Langmuir 201430, 13191–13198. (link)

Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent

Sze, L. L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G. A.; Baker, S. N. Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustainable Chem. Eng. 20142, 2117–2123. (link)

reactive deep eutectic solvents for CO2 capture

Chen, X.; Essner, J. B.; Baker, G. A. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. Nanoscale 20146, 9594–9598. (link)

Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

Wright, A. R.; Li, M.; Ravula, S.; Cadigan, M.; El-Zahab, B.; Das, S.; Baker, G. A.; Warner, I. M. Soft- and Hard-Templated Organic Salt Nanoparticles with the Midas Touch: Gold-Shelled nanoGUMBOS. J. Mater. Chem. C 20142, 8996–9003. (link

Soft- and Hard-Templated Organic Salt Nanoparticles with the Midas Touch: Gold-Shelled nanoGUMBOS

Ramirez-Perez, F. I.; Gutiérrez-Juárez, G.; Bok, S.; Gangopadhyay, K.; Gangopadhyay, S.; Baker, G. A.; Polo-Parada, L. Dye-Doped Organosilicate Nanoparticles as Cell-Preserving Labels for Photoacoustic Signal Generation. J. Biomed. Nanotechnol. 201410, 3337–3350. (link)

Hofmann, C. M.; Essner, J. B.; Baker, G. A.; Baker, S. N. Protein-templated gold nanoclusters sequestered within sol–gel thin films for the selective and ratiometric luminescence recognition of Hg2+Nanoscale 20146, 5425–5431. (link)

Protein-templated gold nanoclusters sequestered within sol–gel thin films for the selective and ratiometric luminescence recognition of Hg2+

Xia, S.; Baker, G. A.; Li, H.; Ravula, S.; Zhao, H. Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Adv. 20144, 10586–10596. (link)

Zhao, H.; Baker, G. A. Ionic Liquids and Deep Eutectic Solvents for Biodiesel Synthesis: a Review. J. Chem. Technol. Biotechnol. 201388, 3–12. (link)

Fowler, D. A.; Atwood, J. L.; Baker, G. A. Formation of a dimeric host–guest complex via binding between a dicationic ionic liquid and a pyrogallol[4]arene macrocycle. Chem. Commun. 201349, 1802–1804. (link)

Formation of a dimeric host–guest complex via binding between a dicationic ionic liquid and a pyrogallol[4]arene macrocycle

Peñalber, C. Y.; Baker, G. A.; Baldelli, S. Sum Frequency Generation Spectroscopy of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions at the Solid Salt–Liquid Interface. J. Phys. Chem. B 2013117, 5939–5949. (link)

Sum Frequency Generation Spectroscopy of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions at the Solid Salt–Liquid Interface

 

Kaintz, A.; Baker, G.; Benesi, A.; Maroncelli, M. Solute Diffusion in Ionic Liquids, NMR Measurements and Comparisons to Conventional Solvents. J. Phys. Chem. B 2013117, 11697–11708. (link)

Solute Diffusion in Ionic Liquids, NMR Measurements and Comparisons to Conventional Solvents

Chen, X.; Baker, G. A. Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst 2013138, 7299–7302. (link)

Tang, S.; Baker, G. A.; Zhao, H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem. Soc. Rev. 201241, 4030–4066. (link)

Trivedi, S.; Pandey, S.; Baker, S. N.; Baker, G. A. Pronounced Hydrogen Bonding Giving Rise to Apparent Probe Hyperpolarity in Ionic Liquid Mixtures with 2,2,2-Trifluoroethanol. J. Phys. Chem. B 2012116, 1360–1369. (link)

Pronounced hydrogen bonding giving rise to apparent probe hyperpolarity in ionic liquid mixtures with 2,2,2-trifluoroethanol

Tang, S.; Baker, G. A.; Ravula, S.; Jones, J. E.; Zhao, H. PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chem. 201214, 2922–2932. (link)

Pandey, S.; Baker, S. N.; Pandey, S.; Baker, G. A. Optically responsive switchable ionic liquid for internally-referenced fluorescence monitoring and visual determination of carbon dioxide. Chem. Commun. 201248, 7043–7045. (link)

Optically responsive switchable ionic liquid for internally-referenced fluorescence monitoring and visual determination of carbon dioxide

Liang, M.; Kaintz, A.; Baker, G. A.; Maroncelli, M. Bimolecular Electron Transfer in Ionic Liquids: Are Reaction Rates Anomalously High? J. Phys. Chem. B 2012116, 1370–1384. (link)

Bimolecular Electron Transfer in Ionic Liquids: Are Reaction Rates Anomalously High?

Jordan, A. N.; Das, S.; Siraj, N.; De Rooy, S. L.; Li, M.; El-Zahab, B.; Chandler, L.; Baker, G. A.; Warner, I. M. Anion-controlled morphologies and spectral features of cyanine-based nanoGUMBOS — an improved photosensitizer. Nanoscale 20124, 5031–5038. (link)

Li, S.; Bañuelos, J. L.; Guo, J.; Anovitz, L.; Rother, G.; Shaw, R. W.; Hillesheim, P. C.; Dai, S.; Baker, G. A.; Cummings, P. T. Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-Ray Scattering Study. J. Phys. Chem. Lett. 2012, 3, 125–130. (link)

Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: a Combined Atomistic Simulation and Small-Angle X-Ray Scattering Study

Al-Azzawi, O. M.; Hofmann, C. M.; Baker, G. A.; Baker, S. N. Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents. J. Colloid Interface Sci. 2012385, 154–159. (link)

Bok, S.; Korampally, V.; Polo-Parada, L.; Mamidi, V.; Baker, G. A.; Gangopadhyay, K.; Folk, W. R.; Dasgupta, P. K.; Gangopadhyay, S. Confeito-Like Assembly of Organosilicate-Caged Fluorophores: Ultrabright Suprananoparticles for Fluorescence Imaging. Nanotechnology 201223, 175601 (11pp). (link)

Yung, K. Y.; Schadock-Hewitt, A. J.; Hunter, N. P.; Bright, F. V.; Baker, G. A. 'Liquid litmus': chemosensory pH-responsive photonic ionic liquids. Chem. Commun. 201147, 4775–4777. (link)

'Liquid litmus': chemosensory pH-responsive photonic ionic liquids