Professional Experience and Appointments:
Curators' Distinguished Professor, University of Missouri ( 9/2022-present)
Co-Director, MU Materials Science and Engineering Institute (5/2022-present)
APS Fellow (Elected 2017), Chemistry Department Fulder Faculty Research Fellow (2015, 2016)
Professor of Chemistry, University of Missouri (2012-present)
Adjunct Professor Mechanical Engineering, University of Missouri (2016-present)
Associate professor of Chemistry, University of Missouri (2008-2012)
Technical Staff Member, Theoretical Division, Los Alamos National Laboratory (1996-2008)
Postdoctoral Research Associate, Theoretical Division, Los Alamos National Laboratory (1993-1996)
Postdoctoral Research Associate, Department of Physical Chemistry, University of Gothenburg, Sweden (1991-1993)
Education:
Ph.D., Oklahoma State University (Theoretical Chemical Dynamics)
B.Sc., Hardin-Simmons University (Chemistry and Physics, double major)
Atomic, mesoscopic, and scale-bridging simulations and theory of organic molecular materials, polymers, and nano/mesoscale composites.
Development and implementation of methods for reliable predictions of condensed phase physical properties (mechanical/thermal), processes (kinetics and thermodynamics of phase transitions), and chemical reactivity (chemically reactive fluid flow).
Material response under isentropic or shock wave loading.
Formulation and parameterization of potential-energy functions suitable for calculations under thermodynamic extremes.
Theoretical and computational chemical dynamics of complicated molecular and condensed phase systems, classical, semiclassical, and electronic structure tools.
Current Group Members:
Dr. Andrey Pereverzev (Research Assistant Professor; theoretical spectroscopy and dynamics; theory of energy and heat transport; shock physics)
Puhan Zhao (Graduate Student; MD simulations of shock waves in low-symmetry polyatomic molecular crystals (TATB))
Dilki Perera (Graduate Student)
Recent Alumni
Dr. Leila Chitsazi (Ph.D. student; now a postdoctoral researcher at the National Institutes of Health)
Prof. Shan Jiang (Postdoc; now Asst Prof of Mechanical Engineering at the University of Mississippi)
Dr. Matt Kroonblawd (Ph.D. student; now a technical staff member in the Materials Sciences Division at Lawrence Livermore National Laboratory)
Dr. Nithin Mathew (Postdoc; now a technical staff member in the Theoretical Division at Los Alamos National Laboratory)
Mr. Ezekiel "Zeke" Piskulich (BSc. Physics, undergradate research with me, now a Ph.D. student in Theoretical Chemistry at the University of Kansas)
Dr. Luis Rivera-Rivera (Postdoc; now Assisstant Professor of Chemistry at Ferris State University)
Current Academic Collaborators
Prof. Santanu Chaudhuri (Argonne National Laboratory and Department of Materials Science and Engineering at University of Illinois-Chicago)
Prof. Zhen Chen, Civil and Environmental Engineering, University of MIssouri-Columbia
Prof. Catalin Picu, Department of Mechanical Aerospace and Nuclear Engineering, Rennselaer Polytechnic Institute
Prof. H. S. "Uday" Udaykumar, Department of Mechanical and Industrial Engineering, University of Iowa
2022
113. Molecular Dynamics in Energetic Materials Research (Editorial), Tommy Sewell, Propellants, Explosives, Pyrotechnics 47, e202280831 (2022).
112. Molecular Dynamics Predictions of Shock-Induced Pore Collapse in (010)-Oriented β-HMX: Effects of Quasi-2D Sample Thickness and Transverse Orientation and Run-to-Run Variability among Independent but Statistically Equivalent Sample Realizations, Puhan Zhao, Dilki Perera, and Tommy Sewell, Propellants, Explosives, Pyrotechnics 47, e202200030 (2022).
111. Head-to-head comparison of molecular and continuum simulations of shock-induced collapse of an elongated pore in an energetic molecular crystal, Yen T. Ngugen, Dilki Perera, Puhan Zhao, Tommy Sewell, and H. S. Udaykumar, Propellants, Explosives, Pyrotechnics 47, e202200016 (2022). Cover article.
110. Heat-current filtering for Green-Kubo and Helfand-moment molecular dynamics predictions of thermal conductivity: Application to the organic crystal β-HMX, Andrey Pereverzev and Tommy Sewell, International Journal of Heat and Mass Transfer 188, 122647 (2022).
109. MD-inferred neural network monoclinic finite-strain hyperelasticity models for β-HMX: Sobolev training and validation against physics constraints, Nikolaos Vlassis, Puhan Zhao, Ran Ma, Tommy Sewell, and WaiChing Sun, International Journal for Numerical Methods in Engineering 123, 3922 (2022). Cover article.
2021
108. Strongly Anisotropic Thermomechanical Response to Shock Wave Loading in Oriented Samples of the Triclinic Molecular Crystal 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB), Puhan Zhao, Matthew P. Kroonblawd, Nithin Mathew, and Tommy Sewell, J. Phys. Chem. C 125, 22747 (2021).
107. Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX), Pratik Das, Puhan Zhao, Dilki Perera, Tommy Sewell, and H. S. Udaykumar, J. Appl. Phys. 130, 085901 (2021).
106. Comparative investigation of shear-band evolution using discrete and continuum-based particle methods, Yu-Chen Su, Tommy Sewell, and Zhen Chen, Acta Geotechnica 16, 2337 (2021).
2020
105. Elastic coefficients of b-HMX as functions of pressure and temperature from molecular dynamics, Andrey Pereverzev and Tommy Sewell, Crystals 10, 1123 (2020).
104. Editorial: Multiscale theory, simulation, and experiment in energetic materials: Getting right answers for correct reasons, Laurence E. Fried, Tommy Sewell, and H. S. Udaykumar, Special Issue: Multiscale Modeling in Propellants, Explosives, Pyrotechnics, 45, 168-168 (2020) https://doi.org/10.1002/prep.202080231 .
103. Tandem molecular dynamics and continuum studies of shock-induced pore collapse in TATB, Puhan Zhao, Sangyup Lee, Tommy Sewell, and H. S. Udaykumar, Special Issue: Multiscale Modeling in Propellants Explos. Pyrotech. 45, 1–28 (2020) DOI: 10.1002/prep.201900382. Cover article.
102. A Molecular Dynamics Simulation Study of Thermal Conductivity Anisotropy in β‑Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (β‑HMX), Rezvan Chitsazi, Matthew P. Kroonblawd, Andrey Pereverzev, and Tommy Sewell Modelling Simul. Mater. Sci. Eng. 28, 025008 (22pp) (2020) https://doi.org/10.1088/1361-651X/ab62e3
2018
101. Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity, Andrey Pereverzev and Tommy Sewell, Phys. Rev. B 97, 104308 (2018). DOI: 10.1103/PhysRevB.97.104308.
100. Pressure-dependent Elastic Coefficients of β-HMX from Molecular Simulations, Nithin Mathew and Tommy Sewell, Short Communication (and invited front-cover image) in Propellants, Explosives, Pyrotechnics 43, 223–227 (2018). DOI: 10.1002/prep.201700286.
99. Correlated molecular orbital theory study of the Al + CO2 reaction, Rezvan Chitsazi, Jeffrey D. Veals, Yi Shi, and Tommy Sewell, Journal of Physical Chemistry A, (available online 2 January 2018, DOI http://dx.doi.org/10.1021/acs.jpca.7b11443).
98. Predicted melt curve and liquid-state transport properties of TATB from molecular dynamics simulations, Nithin Mathew, Matthew P. Kroonblawd, Tommy Sewell, and Donald L. Thompson, Molecular Simulation (available online 4 January 2018, DOI https://doi.org/10.1080/08927022.2017.1418084 ).
2017
97. Hierarchical multiscale simulations of crystalline β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX): Generalized interpolation material point method simulations of brittle fracture using an elastodamage model derived from molecular dynamics, Shan Jiang, Jun Tao, Zhen Chen, and Thomas D. Sewell, International Journal of Damage Mechanics (available online 11 January 2017, DOI: 10.1177/1056789516688747 ).
2016
96. Molecular dynamics simulations of shock wave propagation through the crystal-melt interface of (100)-oriented nitromethane, Shan Jiang, Thomas D. Sewell, and Donald L. Thompson, J. Phys. Chem. C 120 22989 (2016).
95. A coarse-grained model for FCC metals based on hierarchical coupling between molecular dynamics and isothermal dissipative particle dynamics, Yong Gan, Shan Jiang, Y. C. Su, Thomas D. Sewell, and Zhen Chen, Chinese Journal of Computational Mechanics 33, 621 (2016).
94. A theoretical study of the relaxation of a phenyl group chemisorbed to an RDX freestanding thin film, Andrey Pereverzev and Thomas D. Sewell, J. Chem. Phys. 145, 054503 (2016).
93. A generalized crystal-cutting method for modeling arbitrarily oriented crystals in 3D periodic simulation cells with applications to crystal-crystal interfaces, Matthew P. Kroonblawd, Nithin Mathew, Shan Jiang, and Thomas D. Sewell, Computer Physics Communications 207, 232 (2016).
92. Anisotropic relaxation of idealized hot spots in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), Matthew P. Kroonblawd and Thomas D. Sewell, J. Phys. Chem. C 120, 17214 (2016).
91. Nanoindentation of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study, Nithin Mathew and Thomas D. Sewell, J. Phys. Chem. C 120, 8266 (2016).
90. Characteristics of energy exchange between inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals, Matthew P. Kroonblawd, Thomas D. Sewell, and Jean-Bernard Maillet, J. Chem. Phys. 144, 064501 (2016).
89. Predicted anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6-trinitobenzene (TATB): Temperature and pressure dependence and sensitivity to intramolecular force field terms, Matthew P. Kroonblawd and Thomas D. Sewell, Propellants, Explosives, Pyrotechnics 41, 502 (2016).
2015
88. Metal nanostructures: Size effect on the impact responses of metal nanostructures, Zhen Chen, Shan Jiang, Yong Gan, Thomas D. Sewell, and Donald L. Thompson, in CRC Concise Encyclopedia of Nanotechnology, Boris Kharisov, Oxana Kharissova, and Ubaldo Ortiz-Mendez Eds. (CRC Press, Boca Raton, 2015), pp. 494-503.
87. Molecular dynamics simulations of the collapse of a cylindrical pore in the energetic material a-RDX, Reilly M. Eason and Thomas D. Sewell, Journal of Dynamic Behavior of Materials 1, 423 (2015).
86. Anisotropy in surface-initiated melting of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study, Nithin Mathew, Thomas D. Sewell, and Donald L. Thompson, J. Chem. Phys. 143, 094706 (2015).
85. Strategies for non-uniform sampling of molecular dynamics phase space trajectories of relaxation phenomena, Matthew P. Kroonblawd and Thomas D. Sewell, Computer Physics Communications 196, 143 (2015).
84. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath, Luis A. Rivera-Rivera, Albert F. Wagner, Thomas D. Sewell, and Donald L. Thompson, J. Chem. Phys. 142, 014303 (2015).
83. On statistical mechanics of small systems: Accurate analytical equation of state for confined fluids, Mehrdad Khanpour, Luis A. Rivera-Rivera, and Thomas D. Sewell, Physics and Chemistry of Liquids 53, 467 (2015).
82. Obtaining the Hessian from the force covariance matrix: Application to crystalline explosives PETN and RDX, Andrey Pereverzev and Thomas D. Sewell, J. Chem. Phys. 142, 134110 (2015).
81. Generalised stacking fault energies in the basal plane of triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), Nithin Mathew and Thomas D. Sewell, Philosophical Magazine 94, 424 (2015).
80. Multiscale simulation of the responses of discrete nanostructures to extreme loading conditions based on the material point method, Shan Jiang, Zhen Chen, Thomas D. Sewell, Yong Gan, Comput. Methods Appl. Mech. Engrg. 297, 219–238 (2015).
2014
79. Effects of copper nanoparticle inclusions on the rate-dependent pressure-induced fluid-polynanocrystalline structural transition in krypton, Zhen Chen, Shan Jiang, Thomas D. Sewell, Yong Gan, Suleiman Y. Oloriegbe, and Donald L. Thompson, J. Appl. Phys. 116, 233506 (2014).
78. Theoretical determination of anisotropic thermal conductivity for initially defect-free and defective TATB single crystals, Matthew P. Kroonblawd and Thomas D. Sewell, J. Chem. Phys. 141, 184501 (2014).
77. Calculation of anharmonic couplings and THz linewidths in crystalline PETN, Andrey Pereverzev, Thomas D. Sewell, and Donald L. Thompson, J. Chem. Phys. 140, 104508 (2014).
76. A particle-based multiscale simulation procedure within the Material Point Method framework, Zhen Chen, Shan Jiang, Yong Gan, Hantao Liu, and Thomas D. Sewell, Computational Particle Mechanics 1, 147 (2014).
75. A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane, L. A. Rivera-Rivera, Thomas D. Sewell, and Donald L. Thompson, Chem. Phys. Lett. 608, 120 (2014).
74. Molecular dynamics simulations of shock waves in hydroxyl-terminated polybutadiene melts: Mechanical and structural responses, Markus G. Fröhlich, Thomas D. Sewell, and Donald L. Thompson, J. Chem. Phys. 140, 024902 (2014).
2013
73. Molecular dynamics simulations of shock waves in cis-1,4-polybutadiene melts, Lan He, Thomas D. Sewell, and Donald L. Thompson, J. Appl. Phys. 114, 163517 (2013).
72. Matthew P. Kroonblawd and Thomas D. Sewell, Theoretical determination of anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), J. Chem. Phys. 139, 074503 (2013).
71. Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX, A. Pereverzev, Thomas D. Sewell, and Donald L. Thompson, J. Chem. Phys. 139, 044108 (2013).
70. Pivot Algorithm and Push‐off Method for Efficient System Generation of All‐Atom Polymer Melts: Application to Hydroxyl‐Terminated Polybutadiene, Markus G. Fröhlich and Thomas D. Sewell, Macromolecular Theory and Simulations 22, 344 (2013).
69. Post-shock relaxation in crystalline nitromethane, Luis A. Rivera-Rivera, Thomas D. Sewell, and Donald L. Thompson, J. Chem. Phys. 138, 084512 (2013).
2012
68. A multiscale material point method for impact simulation, Zhen Chen, Yilong Han, Shan Jiang, Yong Gan, and Thomas D. Sewell, Theor. Appl. Mech. Lett. 2, 051003 (2012).
67. Size effects on the wave propagation and deformation pattern in copper nanobars under symmetric longitudinal impact loading, Shan Jiang, Zhen Chen, Yong Gan, Suleiman Y. Oloriegbe, Thomas D. Sewell, and Donald L. Thompson, J. Phys. D: Appl. Phys. 45, 475305 (2012).
66. Size effects on the impact response of copper nanobeams, Zhen Chen, Shan Jiang, Yong Gan, Suleiman Y. Oloriegbe, Thomas D. Sewell, and Donald L. Thompson, Journal of Applied Physics 111, 113512 (2012).
65. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals: Plane-specific effects, Lan He, Thomas D. Sewell, and Donald L. Thompson, Journal of Chemical Physics 136, 034501 (2012).
64. Shock-Induced Inelastic deformation in oriented Pentaerythritol Tetranitrate (Invited article), Reilly M. Eason and Thomas D. Sewell, Journal of Physical Chemistry C 116, 2226 (2012).
2011
63. Simulations of deformation processes in energetic materials (Invited book chapter), Richard H. B. Bouma, Antoine E. D. M. van der Heijden, Thomas D. Sewell, and Donald L. Thompson, in “Numerical Simulations of Physical and Engineering Processes”, J. Awrejcewicz Ed. (InTech Open Access, Rijeka, Croatia, 2011). pp. 17-58.
62. Molecular dynamics study of the effect of pressure on the terahertz-region infrared spectrum of crystalline pentaerythritol tetranitrate, Andrey Pereverzev and Thomas D. Sewell, Chemical Physics Letters 515, 32 (2011).
61. Terahertz spectrum and normal-mode relaxation in pentaerythritol tetranitrate: Effect of changes in bond-stretching force field terms, Andrey Pereverzev and Thomas D. Sewell, Journal of Chemical Physics 134, 224502 (2011).
60. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals, Lan He, Thomas D. Sewell, and Donald L. Thompson, Journal of Chemical Physics 134, 124506 (2011).
59. Terahertz normal mode relaxation in pentaerythritol tetranitrate, Andrey Pereverzev and Thomas D. Sewell, Journal of Chemical Physics 134, 014513 (2011).
2010
58. A molecular dynamics study of classical vibrational spectra in hydrostatically compressed crystalline nitromethane, A. Siavosh-Haghighi, R. Dawes, Thomas D. Sewell, and Donald L. Thompson, Journal of Physical Chemistry B 114, 17177 (2010).
57. Anomalous hardening under shock compression in (021)-oriented Cyclotrimethylene Trinitramine single crystals, K. J. Ramos, D. E. Hooks, Thomas D. Sewell, and Marc J. Cawkwell, Journal of Applied Physics 108, 066105 (2010).
56. Molecular dynamics study of the crystallization of Nitromethane from the melt, A. Siavosh-Haghighi, Thomas D. Sewell, and Donald L. Thompson, Journal of Chemical Physics 133, 194501 (2010).
55. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine (RDX) under shock loading, Marc J. Cawkwell, Kyle J. Ramos, Daniel E. Hooks, and Thomas D. Sewell, Journal of Applied Physics 107, 063512 (2010).
2009
54. A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as a function of pressure and temperature, Dmitry Bedrov, Oleg Borodin, Grant D. Smith, and Thomas D. Sewell, Lewis L. Stevens, and Dana M. Dattelbaum, Journal of Chemical Physics 131, 224703 (2009).
53. Shock-induced melting of (100)-oriented Nitromethane: Energy partitioning and vibrational mode heating, Richard Dawes, Ali Siavosh-Haghighi, Thomas D. Sewell, and Donald L. Thompson, Journal of Chemical Physics 131, 224513 (2009).
52. Shock-induced melting of (100)-oriented Nitromethane: Structural relaxation, Ali Siavosh-Haghighi, Richard Dawes, Thomas D. Sewell, and Donald L. Thompson, Journal of Chemical Physics 131, 064503 (2009).
51. Shock-induced transformations in crystalline RDX: A constant-stress Hugoniostat molecular dynamics simulation study, Dmitry Bedrov, Justin B. Hooper, Grant D. Smith, and Thomas D. Sewell, Journal of Chemical Physics 131, 034712 (2009).
50. Nested Markov chain Monte Carlo sampling of a density functional theory potential: Equilibrium thermodynamics of dense fluid nitrogen, Joshua D. Coe, Thomas D. Sewell, and M. Sam Shaw, Journal of Chemical Physics 131, 074105 (2009).
49. Optimal sampling efficiency in Monte Carlo simulation with an approximate potential, Joshua D. Coe, Thomas D. Sewell, and M. Sam Shaw, Journal of Chemical Physics 130, 164104 (2009).
48. Interpolating moving least-squares methods for fitting potential energy surfaces: Using classical trajectories to explore configuration space, Richard Dawes, Alessio Passalacqua, Albert F. Wagner, Thomas D. Sewell, Michael Minkoff, and Donald L. Thompson, Journal of Chemical Physics 130, 144107 (2009).
2008
47. Electromagnetically-induced localized ignition in secondary high explosives, W. Lee Perry, Thomas D. Sewell, Brian C. Glover, and Dana M. Dattelbaum, Journal of Applied Physics 104, 094906 (2008).
46. A quantum chemical method for calculating vibrational lineshifts in diatomic fluids, Joshua D. Coe, Thomas D. Sewell, M. Sam Shaw, and Edward M. Kober, Chemical Physics Letters 464, 265 (2008).
45. First-principles calculations of vibrational normal modes in polyatomic materials with translational symmetry: application to PETN molecular crystal, Kirill Velizhanin, Svetlana Killina, Thomas D. Sewell, and Andrei Piryatinski, Journal of Physical Chemistry B 112, 13252 (2008).
44. Molecular dynamics simulations of energetic materials at thermodynamic equilibrium, Betsy M. Rice and Thomas D. Sewell, in Energetic Materials at Static High Pressures (Springer-Verlag, Heidelberg, 2008), Gasper Piermarini and Suithi M. Peiris, Eds.
43. Shock-induced shear bands in an energetic molecular crystal: Application of shock front absorbing boundary conditions to molecular dynamics simulations, Marc J. Cawkwell, Thomas D. Sewell, Lianqing Zheng, and Donald L. Thompson, Phys. Rev. B 78, 014107 (2008).
42. Polarizable and non-polarizable force fields for alkyl nitrates, Oleg Borodin, Grant D. Smith, Dmitry Bedrov, and Thomas D. Sewell, Journal of Physical Chemistry Part B 112, 734 (2008).